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Abstract

Purpose — To develop a numerical method for solving hyperbolic two-step micro heat transport
equations, which have attracted attention in thermal analysis of thin metal films exposed to
ultrashort-pulsed lasers.

Design/methodology/approach — An energy estimation for the hyperbolic two-step model in a
three-dimensional (3D) micro sphere irradiated by ultrashort-pulsed lasers is first derived, and then a
finite difference scheme for solving the hyperbolic two-step model based on the energy estimation is
developed. The scheme is shown to be unconditionally stable and satisfies a discrete analogue of the
energy estimation. The method is illustrated by investigating the heat transfer in a micro gold sphere
exposed to ultrashort-pulsed lasers.

Findings — Provides information on normalized electron temperature change with time on the
surface of the sphere, and shows the changes in electron and lattice temperatures.

Research limitations/implications — The hyperbolic two-step model is considered under the
assumption of constant thermal properties.

Practical implications — A useful tool to investigate the temperature change in a micro sphere
irradiated by ultrashort-pulsed lasers.

Originality/value — Provides a new unconditionally stable finite difference scheme for solving the
hyperbolic two-step model in a 3D micro sphere irradiated by ultrashort-pulsed lasers.

Keywords Finite difference methods, Stability (control theory), Heat transfer, Numerical analysis

Paper type Research paper

Nomenclature
C., G = heat capacity Ge ={q%,q%,q% = heat flux associated with
G = electron-lattice coupling electrons
factor a1 = (4], qld’ , qf’ = heat flux associated with
7 = laser fluence the lattice Emerald
ke, Iy = thermal conductivity R = radius of the sphere
N,, Ny, Ng = numbers of grid points R, = reflectivity . - P
= heart source 7, ¢, 0 = spherical coordinates mﬁ:t"}‘fég‘;afojro};‘;i P,
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7i, bj, O = (—DAr,G-DAP, (k=1 B = laser penetration depth
A0, respectively V,, Ve Vo = first-order forward finite
T, Th = electron temperature and differences
B lattice temperature Vi, V4, Vi = first-order  backward
" =4 2T 42T finite differences
t, to = time Vi, Vr, Vo, VO = time increment, grid sizes
Iy = laser pulse duration Te, Ti =electron and lattice
”Z‘k = mesh function where 7 is relaxation times,
the time level and 7k is respectively
the grid point

1. Introduction

Ultrashort-pulsed lasers with pulse durations of the order of sub-picosecond to
femtosecond domain possess exclusive capabilities in limiting the undesirable spread
of the thermal process zone in the heated sample (Tzou et al., 2002). They have been
widely applied in structural monitoring of thin metal films (Opsal, 1991), laser
micromachining (Knapp et al, 1990) and patterning (Elliot and Piwczyk, 1989),
structural tailoring of microfilms (Grigoropoulos, 1994), and laser synthesis and
processing in thin-film deposition (Narayan ef al., 1991).

For an ultrashort-pulsed laser, the heating involves high-rate heat flow from
electrons to lattices in the picosecond domains. Depending on the temperature,
electrons have a heat capacity two to three orders of magnitude smaller than that of
lattices. When heated by photons (lasers), the laser energy is primarily absorbed by the
free electrons that are confined within skin depth during the excitation. Electrons first
shoot up to several hundreds or thousands of degrees within a few picoseconds without
disturbing the metal lattices. A major portion of the thermal electron energy is then
transferred to the lattices. Meanwhile another part of the energy diffuses to the
electrons in the deeper region of the target. Because the pulse duration is so short, the
laser is turned off before thermal equilibrium between the electrons and lattices is
reached. In this time interval, the heat flux is essentially limited to the region within the
electron thermal diffusion length. This stage is termed non-equilibrium heating due to
the large differences of temperatures in electrons and lattices (Chen and Beraun, 2001).
The lattice temperature then increases as a result of lattice-electron coupling, resulting
in a new thermal property termed lattice-electron coupling factor. The energy
equations describing the continuous energy flow from hot electrons to lattices during
non-equilibrium heating can be written as (Anisimov ef al, 1974; Chen and Beraun,
2001; Chen et al., 2003; Dai et al., 2004; Naji ef al., 2003; Qiu and Tien, 1992, 1993, 1994;
Tzou, 1995, 1996; Tzou et al., 2002):

Ceaa—Y;e = V[keVTe] - G(Te - Tl) + Q> (1)
oT
G~ = G(Te = T, )

Where T, is electron temperature, 7| — lattice temperature, k. — thermal conductivity
in thermal equilibrium, C. and C; — volumetric heat capacity, G — electron-lattice
coupling factor, @ — ultrashort-pulsed laser heating source, and V — the gradient
operator.



The above coupled equations (1) and (2) are often referred to as parabolic two-step
micro heat transport equations. However, when the laser pulse duration is much
shorter than the electron-lattice thermal relaxation time that is the characteristic time
for the activation of ballistic behavior in the electron gas, the parabolic two-step model
may lose accuracy (Qiu and Tien, 1993; Tzou, 1995). As Qiu and Tien (1994) pointed
out, the relaxation time increases dramatically as the temperature decreases from
0.04ps at room temperature to about 10ps at 10K. They (Qiu and Tien, 1993)
developed the hyperbolic two-step heat transport equations based on the macroscopic
averages of the electric and heat currents carried by electrons in the momentum space.
The hyperbolic two-step model in a general form can be written as follows (Al-Nimr
et al., 1999; Al-Nimr and Arpaci, 2000; Al-Nimr and Alkam, 2003; Al-Odat et al., 2002;
Chen and Bearun, 2001; Chen et al, 2003; Qiu and Tien, 1994):

2= VG- 6T - Ty +Q ®
Teaa—zlte +Ge = —k VT, 4)

G = Vi + 6T~ Ty, )
Tlag] + a4 = —kVT, (6)

Where . and g are the heat fluxes associated with electrons and the lattice,
respectively. Here, 7. is the electron relaxation and 7 is the lattice relaxation time.
It can be seen that if 7. and 7 are zero, the hyperbolic two-step model will reduce to the
parabolic two-step model.

Recently, we have developed a stable three-level finite difference scheme for solving
the parabolic two-step model in a three-dimensional (3D) micro sphere heated by
ultrashort-pulsed lasers (Kaba and Dai, 2005). In this paper, we extend our
investigation to the hyperbolic two-step model in a micro sphere exposed to
ultrashort-pulsed lasers and develop a stable three-level finite difference scheme for
solving the hyperbolic two-step model in a 3D micro sphere heated by
ultrashort-pulsed lasers.

2. Governing equations

Based on equations (3)-(6) and the gradient operator V in spherical coordinates (Ozisik,
1993), the hyperbolic two-step model in a metal micro sphere can be expressed as
follows:

0T 19,5, 1 0, ., 1 [(oagf\ B
“at 12 ar(r qe) rsin¢ a¢(sm¢qe) rsinqb(ae GTe=T0+Q, O
0q., r_ 0T,
Rep TO= TR ")
gt , o ke o,
Te alL +qe_ 2 ad)) (8b)
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ng ke 0T,

ot +40= “rsing 96’ &)

and:
claa—Ttl= —71—2 %(rzqf) - Vsilnq’) %ﬁ (sindxzf) B 7si1n¢ <%> e T, O
¥§+%=—h%; (10a)
71%4'61?:_}%%—2; (10b)

Where 7, ¢, and 6 are spherical coordinates with0 =7» =R, 0= 0=27,0 = ¢ = 7,
and ¢, q¢, and ¢! are the components of g, corresponding to 7, ¢, and 6 coordinates,
respectively. Similarly, ¢, qf’ , and ql" are the components of g;.

The initial and boundary conditions are assumed to be:

Ge=0=0, Te=Ti=Ty, at t=0, 11)

and:

Ge=(d.,q2,¢") =0, 4= <q1’,q1¢,qf’>=5, at r=Rt>0, (12

where T} 1s an initial temperature. The boundary condition arises from the fact that
there are no heat losses from the surface of the sphere in the short time response (Tzou,
1996).

It can be seen that:

Te(r7 d)a 0, t) = Te(7/7 ¢)a 0= 27Ta t)a T](V, d)» 07 lL) = Tl(?’, d)v 0=+ 277-’ t)7 (133)
ae(V; ¢7 07 t) = ae(rv ¢7 6 * 27T7 t)v 61(77 Ba d)a t) = Z]](V, 9 * 2777 ¢7 t) (13b)

The above problem satisfies an energy estimation as follows:
Theorem 1.  Assume that coefficients C,, G, k., G, 7. and 7 are positive constants,
and that the solutions 7, 7}, ¢. and g, of the above initial and boundary value problem

are smooth. A stronger estimate holds as follows:
For any ¢ in the time interval [0, o],

to
F(t) < e {F(O)+ / CD(s)ds}, (14)
0

Where:



R rom w , o g Hyperbolic two-
F(t)z/ / / C.T: +C1T1]r sinpdrdfde step model in a
2 3D micro sphere
// / qe (qe)}ﬂsinq&drd(idqb (15)
2
+k_/ / / {(ql’)2+ qld’ +(q{’)2}rzsin¢drd0d¢, 697
1Jo Jo Jo
1 R 27 pa
@(t):5/0 /0 /0 r2Q%sin pdr dodé, (16)

and £, is a constant.

The proof of theorem 1 can be seen in the Appendix section. It should be pointed out
that obtaining an energy estimation is important for determining if the problem is
well-posed, which is related to the existence and uniqueness of the solution of
the problem. The above obtained energy estimation implies that the problem,
equations (7)-(13), is well-posed in the sense of the definition described in Strikwerads
(1989)’s book. The energy estimation is also helpful for developing a numerical scheme.
It is desirable that the developed numerical scheme should present a discrete analogue
of the energy estimation. This implies that the numerical scheme is stable.

3. Finite difference scheme

To develop such a finite difference scheme, we first design a staggered grid where, 7,
Ty, Ge, and g are located as shown in Figure 1. Here, we denote, 7; = (i — 1/2)Ar,
b= —1/2)Ap, 6, =(k—1/2)A6, where i=1,....N,; j=1, N¢,,
k=1, ...,Ny so that N,A, =R, N¢A¢ = 7, and N()AO 277- Further, (Te)gk
denoted as the numerical approx1mat10n of ( Te)(n, &, O, t,,), where ¢, = nAt and At
is time increment. The first-order forward and backward finite difference operators are
defined as follows:

Uit1jk — Uk

Uik — Ui—1jk
Ar ’ '

Vo, =
righ Ar

Vittije =
Similar notations apply for other variables.

We develop a three-level finite difference scheme for solving the above initial and
boundary problem, equations (7)-(13), as follows:

(Te);’-;jl (T )Uk 1
C. o A o @) ]
1 n
B o 76
g \P {sm bi-1/2) (qe )ij—(l/z)k} an
1 =0 Te); T
B " Vﬂ(qe)ijk—(l/Q) — G[(Te)ijk - (’-rl)ijk} + &

i=1...,N; j=1,....Ng; k=1,...,Ng
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Figure 1.
A staggered grid
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(Tl)l]k - (Tl)l]k 1 2 n
oA} - _EV’ { /(@) (1/2)]';3}
_ Y =6\"
7; sin ¢y Vo {Sm $i-a/2 (q1 )ij(l/Z)k] (19)
1 N T\ A\
- mvﬂ(q] )i]—k*(l/Z) + G[(Te)l]k - (ﬂ)ljk:| )
i=1,...,N,; j=1,...,Ng; k=1,...,Ng
n+1 n—1
(ql)er(l/Z)jk (a),- a/2)ik n -
IN + (q )z a2k = klv?(Tl)iﬂ?’ (20a)
i=2,....,N; j=1,...,Ng; k=1,...,Ng
b n+1 _ ® n—1
- (q1 )z’j—(l/Z)k (ql )ij—(l/2)k N <-¢>>” = — @V (T
! 2At 4 i—(1/2)k y; OV Vi (20b)
i=1,...,N; j=2,....Nyg; k=1,...,Ngy
n+1 n—1
(‘110)1;7'137(1/2) — (qf )z_;k a2 n ky -
B A
T AL + (q )Uk (1/2) 7;sin ¢] 0( I)Z]k’ (20(:)
i=1,...,N; j=1....Ny; k=1,...,Ny;

Where the bar on 7% denotes 7,
conditions are assumed to be:

@) =@ =@)" = @' =0, (Tol =Tk =T} =

And the boundary conditions are discretized as follows:

= LT + 27" + T/71) and so on. The initial

G = (T = To, (1)

\ 1 n
(q:e)zv cae =0, (qu)N vy =0 (22a)
(qe)l;k+(1/2) (qe)z;k+(1/2)+N€ (ql )z]k+(1/2) (‘]1 )z]k+(1/2)+N ; (22b)
0 0
(T )zjk (T )l]k*Ng (Tl )z]k (Tl )zjk+N9 (22C)
for any time level n.
It should be pointed out that we use a weighted average (T”Jr1 + 2T, + Ty h)/4

for stability. The other advantage of using the weighted average is that it is easy to
handle with the temperature-dependent thermal property case, where one may
evaluate these coefficients in time level 7. Finally, it can be seen that the truncation
errors of equations (17)-(20) are O(At? + Ar? + A6? + Ap?), implying that the scheme
is consistent with the partial differential equations (7)-(10).

To obtain the stability of the scheme, equations (17)-(22), with respect to the heat
source, we assume that there is a small change g in the heat source @ and investigate
the magnitude of the changes on T, T}, §. and ¢;. For simplicity, we use the same

Hyperbolic two-
step model in a
3D micro sphere

699




HFF
16,6

700

notations of T, T}, je.and ¢; form the changes in the proof. We introduce the inner
product and norm for mesh functions u;;, and v;;, as follows:
N, Ny Ny

(u,v) = ArA OAdJZ Z Z Uik Vije

=1 j=1 k=1

and:
1/2

N,. Nd) Ng
[leell = <AVAOA¢>Z Z Z u§k>
=1 j=1 k=1
The following lemma 1 will be used.

Lemma 1. For any n,
n+1 n—1 n+1 n—1 n+1 2 n—1 2
( ik + 2uz]k + Wi ) X ( gk Wik ) = ( ik + uzyk) _< ik + Uiy, ) . (23)

Theorem 2. Assume that there is a small change g in the heat source . Then the
solutions T, T}, g. and ¢ of the numerical scheme, equations (17)-(22), satisfy:

Fn) < e3f00r2}% Ok), 0=nlAt=t, (24)
Where:
Fn = Cllr/sin (T )”*1 + (T )”]II + Gillr/sin LT + (T)"1IIP
+ MAGAd’Z Z Z ko i 7z Sin & [(qe)ﬁluzyk +(q0);- (1/2);/42

=2 j=1 k=1
N, Ny Ny

1 , 2
+ ArAHAd;ZZZ Bl 7z Sin ‘151[(41)??1/2);1@ (a1); (1/2);}3}

=2 j=1 k=1
NN¢N0

+1 :
+ArAAGY DN e 7y sin <1/2>[(‘1e)27<1/2)k+ (¢ >Z><1/2>k}
=T =2 el (25)
s Ny

N, 1 ?
+ ArAOAcbZ Z Z A 7’1 Sin ¢ 2 [(‘11 )nf(l/z)k + (qld)) Z—a/z)J

11]2k1
N, dNe

2
+ ArABAd)ZZZ —7 sin ¢;[ qe)zjk (1/2) (qg)z'k—(l/%}

zljlkl
Nq&No

N, 1 )
+ AVA@A(f’ZZZ 7 sin ¢J[ a )z]z;rla/m + (qla):ljk—(l/Z)} ’

=1 j=1 k=1

and:

2 -
D) = = llry/sin Pg"|I? (26)

The proof of theorem 2 can be seen in the Appendix section. Equation (24) can
be considered as a discrete analogue of equation (15). The differences between
equations (15) and (24) are that equation (24) gives an estimation on the changes of
T., T\,4. and ¢, due to a small change g in the heat source @, and that the former uses



the integral and the latter uses the summation. Equation (24) implies that the errors in
T.,T\,4. and g can be controlled by the small error in the heat source Q.
Mathematically, it indicates that the scheme is stable with respect to the source term.
According to the theory in numerical analysis, a consistent and stable finite difference
scheme will give a numerical solution converging to the exact solution of the original
problem. It should be pointed out that there is no restriction on the mesh ratios:

Af At and At
Ar2’ A2 A2
implying that the scheme is unconditionally stable.
An algorithm for computing T, ge, T}, and ¢ at time level # + 1 can be written in
the following steps:

(1) Solve for (§.)"™! from equations (18a)-(18¢c) and substitute it into equation (17) to
obtain an equation that has only two unknowns (7.)** ! and (7)/** L. Similarly,
solve for (§)"** from equations (20a)-(20c) and substitute it into equation (19) to
obtain another equation that has only two unknowns (7.)*"! and (77"

(2) Set up two liner systems for (7.)"* L and (7))**}, respectively, from the obtained
equations in stepl.

(3) Use Gauss-Seidel iterative method to solve for (7! and (7y*+%

(4) Once (T.y"*! and (77! are obtained, (g.)"*' and (§,)"*'are then obtained
from equations (18a)-(18c) and equations (20a)-(20c).

Repeat the calculation until the required time steps have been achieved.

4. Numerical examples

To demonstrate the applicability of the scheme, we investigated the temperature rise
in a gold sphere. The radius (R) for the gold sphere is 0.1 um. The thermal properties
of gold were chosen to be C.=2.1x107°]J/(mm?K), C; = 2.5x10"2]J/(mm?K),
ke =k = 315W/(mK), 7. = 0.04ps, 7 = 0.8ps, G = 2.6 x 107° ] /(mm>Kps) (Tzou,
1996). Also, we chose Ty = 300K.

To apply our scheme, we chose three different meshes of 25 X 20 X 20,
50 X 20 X 20 and 100 x 20 x 20 grid points in (r, 6, ¢) coordinates. The time
increment was chosen to be 0.005 ps.

In the first case, we assume the laser irradiation to be symmetric on the surface of
the sphere. Thus, the heat source was chosen to be (Tzou, 1996):

Qo) = 0. 94][ Rl:| —((R=7)/8)—2.77((t—2ty)/1,)? 27)
1p0

Where J = 134]/m?, t, =100fs (1fs = 10~ %) §=153nm (I1nm = 10~ “m), and
Ry = 0.93. Figure 2 shows the change in electron temperature ((A7.)/(AT.)max) on
the surface of the gold sphere. The maximum temperature rise of 7. (i.e. (ATe)max) on
the surface of the gold sphere is about 953 K. It can be seen from Figure 2 that the
change in electron temperature is similar to that obtained in Chen and Beraun (2001),
Tzou (1996). Also, it can be seen from Figures 2 and 3 that mesh size had no significant
effect on the solution, implying that the scheme is stable. Further, we compared the
solution with that obtained by the parabolic two-step model in Kaba and Dai (2005)
with a mesh of 50 X 20 X 20. Figure 4 gives the electron temperature and lattice
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Figure 5.

Normalized electron
temperature change with
time at the point (* = R,
¢ = 0) of the sphere in the
second example

temperature distributions along the 7-axis for different times ( = 0.2, 0.25, 0.5, 1.0 and
2.0 ps). It can be seen from the figure that the temperature distributions are symmetric
with respect to 7.

The second case assumes that the laser irradiates from top a portion (0 <7 <
R,0=06=27m0= ¢ = (m/2) of the surface of the sphere. In this case, the heat
source was chosen to be:

Qur, @, 1) =0.94] [1;_;?] e—((R—r)/ﬁ)—2.77(<1‘—2tp>/tp)2 Cos ¢.
P

(28)

Figure 4 shows the change in electron temperature ((A7.)/(AT.)max) at the point
(r=L, ¢=0). The maximum temperature rise of 7. (ie. (AT.)max) is about
833K. It can be seen by comparing Figure 2 with Figure 4 that the changes in
electron temperature are similar except that the change in temperature in Figure 5
drops quickly. This is because the laser irradiates only a portion of the
surface and the heat is transferred from the top of the sphere to the bottom.
Figure 6 gives the electron temperature and lattice temperature distributions
along the r-axis with ¢ =0 and 7 for different times (f = 0.2, 0.25, 0.5, 1.0 and
2.0 ps).

The third case assumes that the laser irradiates from the top a small portion
O0O<7r<R0=0=270= ¢ = m/4) of the surface of the sphere. Figure 7 shows
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Figure 7.
Normalized electron
temperature change
with time at the point
(r=R, ¢ =0) of the
sphere in the third
example
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the change in electron temperature ((A7.)/(AT.)max) at the point (# =R, ¢ = 0).
The maximum temperature rise of 7, (ie. (AT.)max) is about 797 K. Again, the
changes in electron temperature is similar to those in Figures 2 and 4 except that the
change in electron temperature in Figure 7 drops faster. This is because the laser
irradiates only a small portion of the surface and the heat is transferred from the top of
the sphere to the bottom in this case. Figure 8 shows the electron temperature and
lattice temperature distributions along the 7-axis with ¢ = 0 and = for different times
(t=02,0.25,0.5, 1.0 and 2.0ps).

Finally, we considered a repetitive-pulse heating case where the heat source was
chosen to be:

1-R :
Q(r, 1) = 0.94 ][ — ] e—(R—r)/s[e—z.w((t—ztp)/tp)l T e—2.77((l‘—4l‘p)/tp)2] (29)
D

with J = 13.4]/m? t,—100fs, 6=153nm, and R=093. Figure 9 shows the
change in electron temperature ((A7.)/(AT.)max) on the surface of the gold
sphere. It can be seen that there are two peaks in electron temperature because of
two pulses. Also, it can be seen that mesh size had no significant effects on the
solution implying that the scheme is stable. Figure 10 shows the electron
temperature and lattice temperature distributions along the r-axis for different
times (t = 0.2, 0.25, 0.5, 1.0 and 2.0ps). Again, it can be seen from the figure that
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Figure 8.

Changes in electron and
lattice temperatures along
the 7-axis with ¢ = 0 and
7 in the third example
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Figure 9.

Normalized electron
temperature change with
time on the surface of the
sphere in the
repetitive-pulse heating
case
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the temperature distributions are symmetric with respect to », which is similar to
those in Figure 4 except for the high temperature.

5. Conclusion

In this study, we have developed a three-level finite difference scheme for solving the
hyperbolic two-step heat transport equations in a 3D micro-sphere heated by
ultrashort-pulsed lasers. The advantages of the scheme are:

it is second-order in truncation error;

+ it satisfies a discrete energy estimation, implying that the scheme is
unconditionally stable with respective to the heat source and there is no
restriction on the mesh ratios At/Ar 2 At/A¢? and At/A6% and

+ it is developed in staggered grid, which prevents the solution from numerical
oscillation.

Numerical examples show that the scheme is efficient.

Here, we considered the hyperbolic two-step model only with constant thermal
properties. Further research will focus on the model with temperature-dependent
thermal properties. The present numerical scheme can be readily generalized to the
temperature-dependent property case. For example, one may evaluate C. and k.
at time level z so that the scheme becomes a linearized finite difference scheme with the
truncation error being still second-order.
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Changes in electron and
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Appendix

Proof of Theorem 1. Multiplying equation (7) by 727 sin ¢, and equation (9) by 727 sin ¢, and
integrating over the domain Q={0=7r=R,0=60=270= ¢ = 7} and summing the
results together, we obtain:

”J Cor?sin O Le T.d0 + m Corsin L 7y d
0 ot 0 ot

=- sin d)i (r’q.) Te dQ2
Ja or

Ca .,
1, sin (15&("2‘11)7‘1 dQ

ad
_ ; ¢
976 (sm bqé )Te dQ

2 (sin

0 7 PP <s1n bq; > T,dQ (30)
: 0

- 7 94 T.dQ

g’
— — T77dQ
o 96 !

- r2sin ¢G(Te — T)>dQ
Q

+ r?sin ¢pT.QdQ,
JJJQ

Where df2 denotes drdfd¢p. The left-hand side (LHS) of equation (30) can be written as
follows:

LHS:g lm Cor?sin ¢T2d9+lm Cir?sin ¢pTHdQ|. (31a)
ar12)))q e 2)))q

On the other hand, one may use Green’s theorem, equation (12) and the fact that rzqg =0
at »=0, and then equation (8a) to simplify the first term on the right-hand side of
equation (30) as follows:
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i [ meganan= [ [ vunmsison

[l
QO Ze a7

£ sin pdQ

5 0T
4 qe or

Il
—
—
—

-
=

712 (31b)

T %+ | 72 o
A q.|q.r”sin ¢pdQ)
a ot

o &)=

; (qg)zrz sin ¢ dQ)

|
—_—

[ 1 qg)zrz sin ¢ dQ.
Q ke

Similarly, the third term on the right-hand side of equation (30) can be simplified as:

_ ”L} 7% (sin pg?) TedQ = —/OR/OZW [rq¢ Tesin ] dodr

. 3lc)
=3 ” { o —l—qe} 72 sin pdQ)
e QO
d 1 .
= f&”Lﬁ ;— (qe) r%sin ¢pdQ
- ”Jﬂ% (qg’)zrz sin ¢ dQ,
and the fifth term:
B aqe PN AN
[I],r56 man = [ [ rarrirorass [][
= J” r‘qf( 1 867;;) sin ¢ dQ)
19 VSI;”[’ (31d)
= —k_eJ” { o +qe}qer sin ¢ d()
_ . d 1 7%, g2 . (Y 2
= &”L)i ke (¢2)"r?sin pdQ JJJQE (g2)"r? sin ¢ dQ.
Using a similar argument, we obtain:
.0 d 1 .
- ”J sin d)ﬁ (r’q)) ThdQ = d—”J 3 kﬂ (ql)zrz sin ¢ dQ
¢ — (3le)
- [ n (g ) r?sin ¢ dQ,

JJa



- (. A 1n e\ Hyperbolic two-

mnyﬁ (sin da) Td0 = &J”lgé k_i qu(b) r*sin $dQ @i Step model in a

_ J LE (be) r2sin dQ, 3D micro sphere

and: 713

o4l
mgrae Tdd=—g ||| 57 @) snedd— ||| & (af)7*singdd.  Glg)

Furthermore, we have by Cauchy-Schwartz’s inequality:

m r?sin ¢pT.QdQ = 1”{ C.T%?sin pdQ + im Q%r%sin ¢dQ. (31h)
o 2)))g ¢ 2C. J)Ja

Substituting equations (31a)-(31h) into equation (30) gives:

d

& ”L)% [CeTz + G le] r%sin ¢ dQ

d 17 . ‘
@ ”QQ B [(qe)2+(43’)2+(q§)2}rzsm $dQ
1 .
Lzé kﬂl {(qlr)2+(q1(b>2+(qle)2} 7% sin ¢ dQ)
#[[], 5 [0+ @] 7sin a0 o

J
" mﬂ% [ (qu)2+<‘ifb>z+(f1f’)z]rz sin ¢ dQ
I

+ J G(Te — T))’r?sin pdQ
Q
1 2.2 1 2,2
= 2J”Q C.T.r smd)dQ—i—ZCe ”LQ 77 sin ¢pdQ).

Dropping the fourth, fifth and sixth terms on the LHS and using the notations of F(#) and
®(#). Equation (32) can be simplified as follows:

F(t) = Ft) + d(). (33)

By Gronwall's inequality (Evens, 1998), we obtain that:

t
Fy=eé {F(O) + / @(s)ds} ,
0

which completes the proof. B

Proof of Theorem 2. Multiplying equation (17) by 16AVA0A¢AW§ sin (j)j(Te)Z-k and
equation (19) by 16A7AOA¢Atr? sin <7,’>]-(T1)Z-k, summing over i, j, k with 1=7=N,,
1=j=Ny,1=k= Ny, and adding the results together, we obtain by lemma 1:
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—16ArAOAGALY S > sin sV, 21 (@) g o] TV
=1 j=1 k=1
N, No Ny . 2 n PN
- 16A7AOA¢Atz Z Z 7V [sm )2 (‘_Ig))ij—a/Z)k} (To)p, 34

=1 j=1 k=1

N, Ny N

—16ar80AAS S S RV, {sm & am(a), (WJ (Thj

=1 j=1 k=1
N, Ng Ny

— 16ArA0AGALY Y > " riVo(@) 0 Toii

=1 j=1 k=1
N, N¢ N,

— 16A7AOAPALY > 0> " 7iVo(@!) iy o T

=1 j=1 k=1
—16G Atllr\/sin o[(Te)" — (T)"II* + 16AHg", 7% sin ¢(T.)"),
We now simplify the first term on the right-hand side of equation (34) using the boundary

condition, equation (22a) and the fact that 75 = ((1/2) — (1/2))Ar = 0, and then equation
(20a) as well as lemma 1 as follows:

AVZV [l a2 (@) (1/2)]}2](T)z]k

=1
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Z +(1/2) qe)z+(1/2>fk(T)th Zrz /2 qe)z (1/2)]k(T)t]k
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= Z ~a/2) (qg)i—(l/Z)jk(Te)i—ljk - Zri—a/Z) (qg)i—(l/Z)jk(Te)ijk

=2
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Similarly, we use the face that sin ¢y 3y = sin0 = sin ¢, 112 = sin 7 = 0, and then equation

(20b) as well as lemma 1 to obtain

Ny
A¢Z 7iVg [sin bi-a/2)(a?) Zfa/zye} (Te)Z'k

=1
Ny
. — n A\
= *A¢Z 7i S dj—q 2) (qg)ijf(l/Z)kvﬁlg(TE)ifk
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. TeAd) Ny 7’2 . n+1 2
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+ k_e E 7/? sin ¢j—1/2) [(qé”)z_%k] s
=2

and use the boundary condition, equations (22b)-(22¢), and then equation (20c) as well as lemma 1

to obtain:
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k=1 k=2
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Where (Te)ZNH is denoted as ( Te)Z'o- Using a similar argument, we have:
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By Cauchy-Schwartz’s inequality, we have:
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Substituting equations (35a)-(35f) and equation (36) into equation (34), dropping some
nonnegative terms, and then using the notations of F' (1) and ® (1), we obtain:

1= AHF(m) = 1+ AHF(n — 1) + Atd(n). 37)

Thus, we have:



_(+Ay
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Using the inequalities (14 &)" < €"¢fore >0, and (1 — &) ! =e®* when 0 <e = 57
& = At and obtain:

F(n) < e"dt - g2ibt {F (0) + max (I)(k)}

= e {F(O) + max @(k)} :
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(38)

we let

(39)

when At = 1 . From equation (21) and the assumption of no changes in the initial conditions, we

obtain that F( ) = 0 and hence F(n) =< €% max g=;=,®(k), which completes the proof.
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